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1. Introduction

Several methods have been developed in the last decades to deal with the subject of
transmission path analysis (TPA) in noise and vibration problems. A distinction can be made
between the so-called one-step methods and two-step methods. The MISO method [1] is a one-
step TPA method because it only requires operational measurements among subsystems in a
linear N-dimensional network. That is to say, the method allows factorization of the signal
(usually acceleration, velocity or displacement in a given direction, or the acoustic pressure at a
given location) at one network subsystem in terms of the signals or forces at the remaining ones,
with the use of only operational measured data. This is to be compared with two-step TPA
methods like the GTDT method (global transfer direct transfer, see Ref. [2]) or the FTF method
(force transfer functions, see Refs. [2–4]), which require transfer functions to be measured initially
with the network stationary. Operational measurements are carried out in a second step and the
previously measured transfer functions are then used to obtain the desired signal factorizations.
The bases of most TPA methods were developed in the mid 1970s. Since then much work has

been done in order to solve some of their numerical problems, as well as to enlarge their range of
applicability (refer to Refs. [5–8] concerning the FTF methods and Refs. [9–11] concerning the
GTDT methods). In this paper, attention will be paid to the MISO method. It will be shown that
the conditioned spectral density function analysis developed to deal with partially correlated
signals on a linear network corresponds in fact, to the LDLH-factorization of the network signal
cross-spectra matrix %#S: Although this may be a recognized result because the MISO method dates
from the 1970s (see Ref. [1]) the authors have not found any published proof of it. A proof is
derived in this paper that might be found interesting by itself and serve as a compendium to obtain
the MISO factorizations in a compact and straightforward way.
Concerning the notation used in this paper, the term subsystem has been identified with a

single-degree-of-freedom (d.o.f.) of a physical entity and not with the physical entity itself. This
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has been done in order to maintain the notation of related work (see e.g. Refs. [1,11] for an
explanation). On the other hand, the term signal will always refer to a scalar quantity (e.g. the
acceleration in one direction at a given point as mentioned above).
The MISO-network corresponds to a special case of the N-dimensional linear network (see

Fig. 1). The signal at one particular subsystem with no force acting on it is chosen as the output
while the signals or forces at the remaining ones are termed the problem inputs. Signals will be
used as inputs in the expressions derived below, although these expressions remain valid for forces.
Note that if N � 1 forces are entering the system, N � 1 signals have to be used if the method is
not to be applied using forces (see Fig. 1). The output is identified with the Nth subsystem of the
network and it will be often symbolized with the subscript y following the notation in Ref. [1]. The
method aims at finding the frequency response functions between every input and the output (see
Fig. 1). The output can be linked to the inputs by means of the linear relation1 (see Ref. [1])

#sy ¼
XN�1

iay

#Hiy #si; ð1Þ

where #Hiy are the unknown frequency response functions, #si is the signal at the ith network
subsystem, #sy denotes the signal at the output and the circumflex superscript denotes frequency
dependence. In order to find the unknowns #Hiy; both sides of Eq. (1) are multiplied by #s�j and then
averaged (the ensemble average or the time average under the ergodic assumption can be
considered, see e.g. Refs. [1,12] for details) to arrive at

%#Sjy ¼
XN�1

iay

#Hiy
%#Sji; jay: ð2Þ

Similarly, it is possible to multiply both sides of Eq. (1) by #s�j and then average to obtain the
auto-spectrum at the output

%#Syy ¼
XN�1

iay

#Hiy
%#Syi: ð3Þ
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Ŝy

S1
ˆ

S2
ˆ S3ˆ

SN-1
ˆ

SN-2
ˆ

f̂1

f̂2 f̂3

f̂N-1

f̂N-2
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Fig. 1. The MISO network. First factorization: signal or force frequency response functions.

1 In Ref. [1] a noise term is added to Eq. (1), which has not been included here for the sake of simplicity.
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In Eq. (2), %#Sji stands for

%#Sji ¼ #s�j #si ¼
1

M

XM
k¼1

#s�jk #sik ð4Þ

and analogous expressions are assumed for %#Sjy; and for
%#Syy and

%#Syi in Eq. (3). M is the number of
samples. Eq. (2) can be solved to find #Hiy once the various signal cross-spectra have been
measured. Then, Eqs. (1) and (3) can be used to find the signal and the auto-spectrum
factorizations, respectively, at the output. The range of validity of this procedure can be better
understood if Eq. (2) is written in matrix form

%#S1y

%#S2y

^
%#SN�1y

0
BBBBB@

1
CCCCCA ¼

%#S11
%#S12 ? %#S1N�1

%#S21
%#S22 ? %#S2N�1

^ ^ & ^
%#SN�11

%#SN�12 ? %#SN�1N�1

0
BBBBB@

1
CCCCCA

#H1y

#H2y

^
#HN�1y

0
BBBB@

1
CCCCA: ð5Þ

When trying to solve Eq. (5) three different cases occur (see e.g. Ref. [13]). First, the problem
cannot be solved if the subsystem signals are fully correlated because the matrix columns become
linearly dependent and consequently, the matrix determinant turns out to be null. Second, if the
subsystem signals are fully uncorrelated, the matrix system is easily solved as %#S becomes diagonal.
This yields

#Hiy ¼
%#Siy

%#Sii

8i ¼ 1;y;N � 1: ð6Þ

Third, if the subsystem signals are partially correlated, the matrix %#S is no longer diagonal
and the linear system (5) has to be solved to obtain the various #Hiy: Several algorithms
exist to invert %#S and solve Eq. (5). The conditioned spectral density functions developed
in Refs. [1,14,15] can be obtained in fact, as a by-pass product of a particular procedure
of solving the linear system (5). As mentioned above, it is the purpose of this paper to show
that all the terms arising from the conditioned spectral analysis can be obtained in a compact
form by means of the LDLH-factorization of the cross-spectral density matrix %#S: The LDLH-
factorization of a matrix can be obtained straightforwardly from its LU-factorization
(see Ref. [16]) that is one possible way to solve Eq. (5). The importance of the conditioned
spectral density functions relies on the fact that they give information on the noise and
vibration transmission paths among the network subsystems. That is, in some cases for instance,
they can determine the amount of the signal at the output that is due to the direct link between the
output and say, subsystem 1, and how much of the output signal comes from the remaining
subsystems.
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2. Conditioned spectral density functions

2.1. Compact formulation by means of the LDLH-factorization

The signal at subsystem i when all linear effects from the remaining subsystem signals #s1y#si�1

have been removed from it by using least-squares techniques (see Refs. [1,12]) will be denoted by
#si�1yi�1: In an analogous way, #Sij�1 will denote the conditioned cross-spectral density function
between subsystems i and j without passing through subsystem 1. #Sij�1 can be obtained from

#Sij�1 :¼
%#S11

%#Sij � %#Si1
%#S1j

%#S11
: ð7Þ

That is to say, Eq. (7) represents the cross-spectral density function between i and j when the
linear effects of #s1 are removed from #si and #sj: This equation can be generalized so that the
conditioned cross-spectral density function between any pair of subsystems i and j; when
the linear effects of the subsystems set f1yng has been removed from their signals, turns out to be

#Sij�1yn ¼
#Snn�1yn�1

#Sij�1yn�1 � #Sin�1yn�1
#Snj�1yn�1

#Snn�1yn�1
;

i ¼ n þ 2;y;N; j ¼ n þ 2;y;N: ð8Þ

By defining the parameter #Lij as

#Lij :¼
#Sij�1yi�1

#Sii�1yi�1
; i; j ¼ 1;y;N ð9Þ

it follows that (see Ref. [14])

%#Syy ¼
XN�1

i¼1

Liy

�� ��2 #Sii�1yi�1 þ #Syy�1yN�1 ð10Þ

and the signal at the receiver, #sy; can be obtained from (see Fig. 2)

#sy ¼
XN

i¼1

#Liy #si�1yi�1: ð11Þ
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Fig. 2. The MISO network. Second factorization: signal or force conditioned spectral density functions.

O. Guasch, F.X. Magrans / Journal of Sound and Vibration 277 (2004) 1082–1092 1085



Eq. (11) gives the signal at y as the summation of various contributions: contribution from
subsystem 1, plus contribution from subsystem 2 when the linear effects from 1 to 2 have been
removed, plus contribution of subsystem 3 when the linear effects from 1 and 2 to 3 have been
removed, etc. Hence, Eqs. (1) and (11) allow the signal at the output from the original and
conditioned signals at all the remaining subsystems, respectively, to be reconstructed once the
parameters #Hiy and #Liy have been found. The same follows for the auto-spectra in Eqs. (3) and (10).
The relations between #Sij�1Cn and #Hij and between #Hiy and #Liy are given in Refs. [14,15] with

some minor differences concerning the notation used here and the addition of the noise term
mentioned previously. These relations are given by

#Hij ¼
#Sij�1yNij

#Sii�1yNij

; Nij :¼ fNg � fi; jg; ð12Þ

#Liy ¼
XN�1

j

#Lij
#Hiy; #LN�1y ¼ #HN�1y: ð13Þ

As mentioned above, the conditioned spectral density functions approach and their
corresponding equations may be easily understood as naturally arising from the process involved
in the solution of the linear system (5). If an LU-factorization of the cross-spectra density matrix %#S

is performed to do so, the parameters #Lij and the conditioned signals are recovered. By including
an extra row and column in %#S; corresponding to the output (Nth subsystem), it follows from the
LDLH-factorization of %#S that

%#S ¼LDLH

¼

1 0 0 0 ? 0

#S21
#S11

1 0 0 ? 0

#S31
#S11

#S32�1
#S22�1

1 0 ? 0

#S41
#S11

#S42�1
#S22�1

#S43�12
#S33�12

1 ? 0

^ ^ ^ ^ & 0

#SN1
#S11

#SN2�1
#S22�1

#SN3�12
#S33�12

?
#SNN�1�1yN�2
#SN�1N�1�1yN�2

1

2
66666666666664

3
77777777777775

#S11 0 0 0 ? 0

0 #S22�1 0 0 ? 0

0 0 #S33�12 0 ? 0

0 0 0 #S44�123 ? 0

^ ^ ^ ^ & 0

0 0 0 0 0 #SNN�1yN�1

2
66666666664

3
77777777775




1
#S12
#S11

#S13
#S11

#S14
#S11

?
#S1N

#S11

0 1
#S23�1
#S22�1

#S24�1
#S22�1

?
#S2N�1
#S22�1

0 0 1
#S34�12
#S33�12

?
#S3N�12
#S33�12

0 0 0 1 ? ^

^ ^ ^ ^ &
#SN�1N�1yN�2
#SN�1N�1�1yN�2

0 0 0 0 ? 1

2
66666666666664

3
77777777777775
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¼

1 0 0 0 ? 0

#L�12 1 0 0 ? 0

#L�13 #L�23 1 0 ? 0

#L�14 #L�24 #L�34 1 ? 0

^ ^ ^ ^ & 0

#L�1N
#L�2N

#L�3N ? #L�N�1N 1

2
66666666664

3
77777777775

#S11 0 0 0 ? 0

0 #S22�1 0 0 ? 0

0 0 #S33�12 0 ? 0

0 0 0 #S44�123 ? 0

^ ^ ^ ^ & 0

0 0 0 0 0 #SNN�1yN�1

2
66666666664

3
77777777775




1 #L12
#L13

#L14 ? #L1N

0 1 #L23
#L24 ? #L2N

0 0 1 #L34 ? #L3N

0 0 0 1 ? ^

^ ^ ^ ^ & #LN�1N

0 0 0 0 ? 1

2
6666666664

3
7777777775
; ð14Þ

where use of #S�ij�1yn ¼ #Sji�1yn and #L�ij :¼ #S�ij�1yi�1=
#S�ii�1yi�1 has been made in the last equality,

and the over bar denoting mean values on matrix components has been omitted to simplify the
notation. Note that in order to keep the original notations in Refs. [1,14,16] a certain
inconsistency has arisen, since elements of matrix L in Eq. (14) are given by #L�ji instead of #Lij :
Nevertheless, this has no further complication and does not influence the foregoing results.
Eq. (14) will be proven in next Section.
From Eq. (14), #S can be expanded as

%#S ¼
XN

i¼1

#Sii�1yi�1liðliÞ
H ¼ #S11l1ðl1Þ

H þ #S22�1l2ðl2Þ
H

þ #S33�12l3ðl3Þ
H þ?þ #SNN�1yN�1lNðlNÞ

H ; ð15Þ

where li denotes the ith column vector of matrix L and lHi its adjoint. The series development for
the various elements in Eq. (15) allow e.g. Eq. (10) to be recovered and give rise to the various
transitional relations of the method (see Refs. [14,15]). Note also that the identity trð %#SÞ ¼
trðLDLHÞ (with trð�Þ denoting the matrix trace) states the obvious fact that the whole energy of the
system does not depend on how it is factorized among the various subsystems.

2.2. Proof

The proof of Eq. (14) in the previous Section starts by finding the LU-factorization of matrix %#S;
i.e. factorizing %#S as a product of a unit lower triangular matrix, L; (with units on the main
diagonal) and a regular upper triangular matrix, U:

ARTICLE IN PRESS

O. Guasch, F.X. Magrans / Journal of Sound and Vibration 277 (2004) 1082–1092 1087



The first result will show that the N 
 N matrix U is given by the following expression:

U ¼

#S11
#S12

#S13
#S14 ? #S1N

0 #S22�1
#S23�1

#S24�1 ? #S2N�1

0 0 #S33�12
#S34�12 ? #S3N�12

0 0 0 & ? ^

^ ^ ^ ^ & ^

0 0 0 0 ? #SNN�1yN�1

2
66666666664

3
77777777775
: ð16Þ

Note that again, over bars denoting averages on matrix elements have not been explicitly written.
It is shown in Ref. [16] that the N 
 N upper triangular matrix U of %#S can be written in terms of a
product series of the so-called gaussian matrices. That is

U ¼ MN�1MN�2yM2M1
%#S ¼

YN�1

i¼1

MN�i

 !
%#S; ð17Þ

where Mi is given by

Mi ¼ I� tieTi ; ð18Þ

I is the identity matrix, ti ¼ ð0yi zeros 0; tiþ1 y tNÞ
T is the ith Gauss vector whose components

tði þ 1 : nÞ are the so-called Gauss multipliers, and ei is the ith vector of the canonical base.
If the matrix Un is identified with the product of the first n terms in Eq. (18),

Un � MnMn�1yM2M1
%#S; 1onpN � 1 ð19Þ

the multipliers of the matrix Mnþ1 can be obtained from the components of the Un matrix:

tnþ1 ¼ 0 y
nþ1 zeros

0;
un

nþ2nþ1

un
nþ1nþ1

y
un

Nnþ1

un
nþ1nþ1

� �T

: ð20Þ

Particular cases of Eq. (19) are UN�1 ¼ U and U1 ¼ M1
%#S: On the other hand, note that Eq. (20)

requires that Un
nþ1nþ1a0 for any n:

It will be proven by induction that Un has the following expression:

Un ¼

#S11
#S12

#S13 ? #S1n
#S1nþ1 ? #S1N

0 #S22�1
#S23�1 ? #S2n�1

#S2nþ1�1 ? #S2N�1

^ 0 #S33�12 ? #S3n�12
#S3nþ1�12 ? #S3N�12

^ ^ 0 & ^ ^ ^ ^

^ ^ ^ & #Snn�1yn�1
#Snnþ1�1yn�1 ? #SnN�1yn�1

^ ^ ^ ^ 0 #Snþ1nþ1�1yn ? #SnN�1yn

^ ^ ^ ^ ^ ^ ^ ^

0 ? ? ? 0 #SNnþ1�1yn ? #SNN�1yn

2
6666666666666664

3
7777777777777775

: ð21Þ
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Case n ¼ 1: It will be first shown that Eq. (21) holds for n ¼ 1: From Eq. (19) it follows
U1 ¼ M1

%#S; and Eqs. (18) and (20) yield

M1 ¼ I�

0

#S21= #S11

#S31= #S11

^
#SN1= #S11

0
BBBBBBB@

1
CCCCCCCA
ð0 1 0 ? 0Þ ¼

1 0 0 0 ? 0

� #S21= #S11 1 0 0 ? 0

� #S31= #S11 0 1 0 ? 0

^ ^ 0 & & ^

^ ^ ^ & & 0

� #SN1= #S11 0 0 ? 0 1

2
6666666664

3
7777777775
: ð22Þ

Performing the matrix product of M1 and #S for the elements of matrix U1 results in

U1
ij ¼ #Sij ; i ¼ 1; j ¼ 1;y;N

U1
ij ¼ 0; i ¼ 1;y;N; j ¼ 1

U1
ij ¼ #Sij �

#Si1
#S1j

#S11

; i ¼ 2;y;N; j ¼ 2;y;N ð23Þ

and from the recursive relation for the conditional cross-spectra functions (8) it can be seen that
the last equality of Eq. (23) becomes

U1
ij ¼ #Sij �

#Si1
#S1j

#S11

¼
#Sij

#S11 � #Si1
#S1j

#S11

¼ #Sij�1; i ¼ 2;y;N; j ¼ 2;y;N ð24Þ

so it is now clear that U1 can be obtained from Eq. (21) with n ¼ 1:
Case n þ 1: It will be now proven that if Un is given by Eq. (21) then Unþ1 can be obtained from

the same expression. From Eq. (19) it follows that

Unþ1 ¼ Mnþ1Un ð25Þ

and using Eqs. (18) and (20) Mnþ1 becomes

Mnþ1 ¼ I�

0

^

0

#Snþ2nþ1�1yn�1
#Snþ1nþ1�1yn�1

^
#SNnþ1�1yn�1
#Snþ1nþ1�1yn�1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
ð0 ? 0 1 0 ? 0Þ
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¼

1 0 ? 0 ? ? ? 0

0 1 ? ? ? ? ? 0

^ ^ & ^ ^ ^ ^ ^

^ ^ ^ 1 & ^ ^ ^

0 0 0 �
#Snþ2nþ1�1yn�1
#Snþ1nþ1�1yn�1

1 ? 0 0

^ ^ ^ ^ 0 & ^ ^

^ ^ ^ ^ ^ ^ 1 0

0 ? 0 �
#SNnþ1�1yn�1
#Snþ1nþ1�1yn�1

0 ? 0 1

2
66666666666666664

3
77777777777777775

: ð26Þ

Performing the matrix product (25) for the Unþ1 elements yields

Unþ1
ij ¼ Un

ij ; i ¼ 1;y; n þ 1; j ¼ 1;y; n þ 1;

Unþ1
ij ¼ 0; i ¼ n þ 2;y;N; j ¼ 1;y; n þ 1;

Unþ1
ij ¼ #Sij�1yn�1 �

#Sin�1yn�1
#Snj�1yn�1

#Snn�1yn�1
; i ¼ n þ 2;y;N; j ¼ n þ 2;y;N ð27Þ

and using again the recursive relation for the conditional cross-density functions (8), the last
equality of Eq. (27) can be written as

Unþ1
ij ¼ #Sij�1yn�1 �

#Sin�1yn�1
#Snj�1yn�1

#Snn�1yn�1
¼ #Sij�1yn;

i ¼ n þ 2;y;N; j ¼ n þ 2;y;N: ð28Þ

So it has finally been shown that Eq. (21) holds for Unþ1 if it holds for Un; which proves its
validity together with the result for the case n ¼ 1:
Once U is obtained, it is necessary to calculate the unity lower matrix L: L is given by the

following expression:

L ¼

1 0 0 0 ? 0

#S21
#S11

1 0 0 ? 0

#S31
#S11

#S32�1
#S22�1

1 0 ? 0

#S41
#S11

#S42�1
#S22�1

#S43�12
#S33�12

1 ? 0

^ ^ ^ ^ & 0

#SN1
#S11

#SN2�1
#S22�1

#SN3�12
#S33�12

?
#SNN�1�1yN�2
#SN�1N�1�1yN�2

1

2
66666666666664

3
77777777777775
: ð29Þ
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A series product development of L can be used to prove (29) (see [16]). L can be obtained from the
inverses of the various gaussian matrices appearing in Eq. (17)

L ¼ M�1
1 M�1

2 yM�1
N�2M

�1
N�1 ¼

YN�1

i¼1

M�1
i : ð30Þ

These inverses can be easily calculated taking into account that

M�1
i ¼ Iþ tieTi : ð31Þ

In order to finally prove that L has the expression in Eq. (29), an induction process very similar to
the one followed to obtainU can be applied to Eq. (30). As no new insight is gained, this process is
not performed here.
From the above deductions the LU-factorization of %#S has been obtained, hence

%#S ¼ LU ð32Þ

with L given by Eq. (29) and U given by Eq. (21). Obtaining the LDLH-factorization of %#S is now
straightforward. U is written as a product of two matrices: a diagonal matrix D whose terms are
given by the diagonal of U and another matrix, U0; which is unity upper triangular and whose
rows are those of U divided by the corresponding row-element of D: It follows

U ¼ DU0 ð33Þ

and from Eqs. (16), (29) and (4)

U0 ¼ LH : ð34Þ

Hence the LDLH-factorization of %#S Eq. (14) has been obtained.

3. Conclusions

In this paper, it has been shown that the conditioned spectral density function analysis
developed to deal with partially correlated signals on a linear network can be obtained from the
LDLH factorization of the network signal cross-spectra matrix %#S: This allows all the terms
appearing in the series development of the conditioned spectral analysis to be obtained in a clear
and compact formulation. As most modern mathematical software packages contain matrix
factorizations such as the LU or the LDLH ones, it is quite a straightforward matter to carry out a
conditioned spectral analysis from measured data.
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